Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
It is somewhat surprising, but problems in quantum computing lead to problems in algebraic graph theory. I will discuss some instances that I am familiar with, and note a commmon thread.
This talk is concerned with the noise-insensitive transmission of quantum information. For this purpose, the sender incorporates redundancy by mapping a given initial quantum state to a messenger state on a larger-dimensional Hilbert space. This encoding scheme allows the receiver to recover part of the initial information if the messenger system is corrupted by interaction with its environment. Our noise model for the transmission leaves a part of the quantum information unchanged, that is, we assume the presence of a noiseless subsystem or of a decoherence-free subspace.