Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Strings vs. particles. Branes and Holography in quantum gravity.
TBA
The history of human knowledge is often highlighted by our efforts to explore beyond our apparent horizon. In this talk, I will describe how this challenge has now evolved into our quest to understand the physics at/beyond the cosmological horizon, some twenty orders of magnitude above Columbuss original goal.
Strings vs. particles. Branes and Holography in quantum gravity.
We show that the matrix-model for noncommutative U(n) gauge theory actually describes SU(n) gauge theory coupled to gravity.
The nonabelian gauge fields as well as additional scalar fields couple to a dynamical metric G_ab, which is given in terms of a Poisson structure. This leads to a gravity theory which is naturally related to noncommutativity, encoding those degrees of freedom which are usually interpreted as U(1) gauge fields. Essential features such as gravitational waves and the Newtonian limit are reproduced correctly.
The Problem of Time in Quantum Gravity and Cosmology
The Problem of Time in Quantum Gravity and Cosmology
Advanced General Relativity
The renormalization group (RG) is one of the conceptual pillars of statistical mechanics and quantum field theory, and a key theoretical element in the modern formulation of critical phenomena and phase transitions. RG transformations are also the basis of numerical approaches to the study of low energy properties and emergent phenomena in quantum many-body systems. In this colloquium I will introduce the notion of \\\"entanglement renormalization\\\" and use it to define a coarse-graining transformation for quantum systems on a lattice [G.Vidal, Phys. Rev. Lett.
The basic problem of much of condensed matter and high energy physics, as well as quantum chemistry, is to find the ground state properties of some Hamiltonian. Many algorithms have been invented to deal with this problem, each with different strengths and limitations. Ideas such as entanglement entropy from quantum information theory and quantum computing enable us to understand the difficulty of various problems.