Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Physics beyond the standard model: theories of elementary particles with extra space dimensions (large, small, warped and flat); supersymmetry; grand unification; dark matter; inflation and dark energy; as well as relationships between the different subjects.
Observational cosmology, with particular focus on the formation and evolution of large scale structures in our universe like clusters of galaxies as large as 500 million light years. “Weighing” the universe, and mapping out the mysterious dark matter it contains.
Cosmology as a natural meeting ground for fundamental theory (e.g. superstring theory or quantum gravity) and observations. Exploring how seeds laid down in the very early universe developed into the large scale structure we observe in the universe today.
Mathematical methods in superstring theory with applications to black hole physics (e.g. Hawking radiation) and models of the fundamental forces of nature.
Implications of high-energy elementary particle physics for physics of the early universe and its evolution (Big Bang, creation of matter, formation of galaxies, etc). And vice-versa: implications of observable cosmological data for fundamental physics.
We present a short review of the local conformal symmetry and its anomalous violation in curved $4d$ space-time. Furthermore we discuss the ambiguities of conformal anomaly and the anomaly-induced effective actions. Despite the conformal symmetry is always broken at quantum level, it is useful for constructing the best known approximations for investigating quantum corrections to the classical action of gravity. These quantum corrections represent an appropriate basis for a number of applications in cosmology and black hole physics.
TBA
TBA
Spacelike separated classical interventions make us to rethink what is quantum and what is classical. Quantum Lorentz transformations show that identification of subsystems is a tricky business, ditto entropy, entanglement and thermodynamic quantities. Resolution of information loss problem in black hole physics is tied to a construction of a theory of quantized gravity.
Check back for details on the next lecture in Perimeter's Public Lectures Series