Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The primordial density fluctuations that seeded large-scale structure are known to be nearly Gaussian, as predicted by most early universe models like slow-roll inflation. Many of these models predict a small (but nonzero!) amount of primordial non-gaussianity, which can subtly affect the statistics of CMB anisotropies. Surprisingly, even a small primordial non-gaussianity can produce enormous changes in the large-scale clustering of galaxies and quasars at late times.
Gauge Invariant Cosmological Perturbation theory from 3+1 formulation of General Relativity. This course will aim to study in detail the 3+1 decomposition in General Relativity and use the formalism to derive Gauge invariant perturbation theory at the linear order. Some applications will be studied.
We discuss a candidate mechanism through which one might address the various cosmological constant problems. We observe that the renormalization of gravitational couplings manifests non-local modifications to Einstein's equations as quantum corrected equations of motion, and in doing so offers a complimentary realization of the degravitation paradigm-- a realization through which its non-linear completion and the corresponding modified Bianchi identities are readily understood.
Gauge Invariant Cosmological Perturbation theory from 3+1 formulation of General Relativity. This course will aim to study in detail the 3+1 decomposition in General Relativity and use the formalism to derive Gauge invariant perturbation theory at the linear order. Some applications will be studied.
One might have hoped that philosophers had sorted out what ‘truth’ is supposed to be by now. After all, Aristotle offered what seems to be a clear and simple characterization in his Metaphysics. So perhaps it is surprising (and then again perhaps it isn’t), that contemporary philosophers have not settled on a consensus regarding the nature of truth to this day.
Gauge Invariant Cosmological Perturbation theory from 3+1 formulation of General Relativity. This course will aim to study in detail the 3+1 decomposition in General Relativity and use the formalism to derive Gauge invariant perturbation theory at the linear order. Some applications will be studied.