Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
For approximately half a century, core-collapse supernovae have posed a vexing puzzle for theorists despite being a major ingredient (and uncertainty) in fields ranging from stellar and galaxy evolution to the interstellar medium. Historically, advances in core-collapse theory have been linked to advances in computing power and software. Supernovae are inherently multi-dimensional objects in which neutrino transport, gravity, hydrodynamic instabilities and convection play important roles.
Recent multidimensional supernova simulations seem to support an assumption that the neutrino-driven mechanism might work to blow up massive stars. However the explosion energies obtained in those simulations are usually not enough to account for the canonical explosion energy of 10^51 ergs.
We explore the duality, conjectured in earlier work, between the wave function of the multiverse and a 3D Euclidean field theory on the future boundary of spacetime. We propose that a measure for the multiverse, which is needed in order to extract quantitative probabilistic predictions, can be derived in terms of the boundary theory by imposing a UV cutoff. In the inflationary bulk, this measure corresponds to a cutoff at surfaces of constant comoving apparent horizon.
The inner crust of neutron stars has a remarkable property that it is crystalline as well as superfluid. I will describe the low energy theory of systems with this property in general, and describe how to relate the low energy constants of the theory to derivatives of the free energy with respect to lattice shape and chemical potentials. As an application, I will discuss the mixing of lattice and superfluid modes in the neutron star inner crust.
Low-density neutron matter is relevant to the study of neutron-rich nuclei and neutron star crusts. Unpolarized neutron matter has been studied extensively over a number of decades, while experimental guidance has recently started to emerge from the field of ultracold atomic gases. We study population-imbalanced neutron matter (possibly relevant to magnetars and to density functionals of nuclei) applying a Quantum Monte Carlo method that has proven successful in the field of cold atoms. We report on the first ab initio simulations of superfluid low-density polarized neutron matter.