Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
This course begins with a thorough introduction to quantum field theory. Unlike the usual quantum field theory courses which aim at applications to particle physics, this course then focuses on those quantum field theoretic techniques that are important in the presence of gravity. In particular, this course introduces the properties of quantum fluctuations of fields and how they are affected by curvature and by gravitational horizons.
After a review of the axiomatic formulation of quantum theory, the generalized operational structure of the theory will be introduced (including POVM measurements, sequential measurements, and CP maps). There will be an introduction to the orthodox (sometimes called Copenhagen) interpretation of quantum mechanics and the historical problems/issues/debates regarding that interpretation, in particular, the measurement problem and the EPR paradox, and a discussion of contemporary views on these topics.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20--70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of aP = (8.74 1.33) 1010 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is currently being investigated.
I'll discuss some work-in-progress about the computational complexity of simulating the extremely "simple" quantum systems that arise in linear optics experiments. I'll show that *either* one can describe an experiment, vastly easier than building a universal quantum computer, that would test whether Nature is performing nontrivial quantum computation, or else one can give surprising new algorithms for approximating the permanent. Audience feedback as to which of these possibilities is the right one is sought. Joint work with Alex Arkhipov.
Check back for details on the next lecture in Perimeter's Public Lectures Series