Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Lecture on Quantum Groups by Lucy Zhang
Entanglement is one of the most fundamental and yet most elusive properties of quantum mechanics. Not only does entanglement play a central role in quantum information science, it also provides an increasingly prominent bridging notion across different subfields of Physics --- including quantum foundations, quantum gravity, quantum statistical mechanics, and beyond. Arguably, the property of a state being entangled or not is by no means unambiguously defined.
Lecture on Quantum Groups by Lucy Zhang
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
Philosophy of physics, puzzles about the content and status of foundational principles – the logic of physicists’ basic assumptions, especially with regards to space and time, and the history of science, e.g. exactly how Einstein made his discoveries.
Removing the mystery from quantum mechanics, the Bohmian perspective – a way of describing the motion of quantum particles, and applying this to spacetime singularities (where gravity becomes infinite) like those inside a black hole.
Quantum gravity, quantum processes in the early universe, evaporation of black holes, limits on the measurements made by real detectors (coupled to the environment), and with regards to mathematical problems, studying techniques rather than finding solutions.
Achievable experimental systems in quantum and atomic optics, the effects of measurement and control on quantum systems, quantum technologies for processing information and quantum computation.
The nature of time, probability and quantum mechanics, philosophy of physics and metaphysics, especially issues involving the role of mathematical tools like symmetry in physics, and applying this formal apparatus to the philosophy of mind.