Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Two of the most exciting observables in the cosmic microwave background (CMB) radiation, which could deeply impact our picture of the early universe, are non-Gaussianity and tensor modes. A potential detection of tensor modes can be explained in terms of a model of large field inflation. Theoretical considerations suggest that a symmetry should be invoked in order to protect the flatness of the inflaton potential and hence an axion enjoying a shift symmetry is a natural candidate.
Galaxy mergers, which are a natural consequence of hierarchical assembly of galaxies, are expected to produce binary black holes, which subsequently merge. The detection and analysis of gravitational waves from these sources is the major aim of the next generation gravitational wave detector: LISA, the Laser Interferometric Space Antenna.
In causal set quantum gravity, spacetime is assumed to have a fundamental atomicity or discreteness, and is replaced by a locally finite poset, the causal set. After giving a brief review of causal sets, I will discuss two distinct approaches to constructing a quantum dynamics for causal sets. In the first approach one borrows heavily from the continuum to construct a partition function for causal sets.
Check back for details on the next lecture in Perimeter's Public Lectures Series