Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Domains were introduced in computer science in the late 1960\'s by Dana Scott to provide a semantics for the lambda calculus (the lambda calculus is the basic prototype for a functional programming language i.e. ML). The study of domains with measurements was initiated in the speaker\'s thesis: a domain provides a qualitative view of information expressed in part by an \'information order\' and a measurement on a domain expresses a quantitative view of information with respect to the underlying qualitative aspect.
TBA
Symmetry principles in physics are a very powerful guiding principle. Sometimes they are so powerful that they can determine a theory completely. This talk will be a tour from the Standard Model of particle physics to string theory compactifications using mostly symmetry arguments.
Symmetry principles in physics are a very powerful guiding principle. Sometimes they are so powerful that they can determine a theory completely. This talk will be a tour from the Standard Model of particle physics to string theory compactifications using mostly symmetry arguments.
Taking our intuitive understanding of the quantum world gained by studying a particle in a one-dimensional box, we generalize to understand a quantum harmonic oscillator.
Learning Outcomes:
• Introduction to the classical physics of a ball rolling back and forth in a bowl, a simple example of a very important type of bounded motion called a “harmonic oscillator.”
• The quantization of allowed energies of a harmonic oscillator: even spacing between energy levels, and zero point energy.
By applying our understanding of the quantum harmonic oscillator to the electromagnetic field we learn what a photon is, and are introduced to “quantum field theory” and the amazing “Casimir effect.”
Learning Outcomes:
• Understanding that classical electromagnetic waves bouncing around inside a mirrored box will exist as standing waves with only certain allowed frequencies.
Space obeys the rules of Euclidean geometry. Spacetime obeys the rules of a new kind of geometry called Minkowskian geometry.
Learning Outcomes:
• Triangles in spacetime obey a Pythagoras-like theorem, but with an unusual minus sign.
• The true nature of time as geometrical distance in spacetime.
• How to analyse and resolve the Twins’ Paradox using spacetime diagrams in combination with Minkowskian geometry.
Learning to use Minkowskian geometry to understand, very simply, a variety of aspects of Einstein’s spacetime.
Learning Outcomes:
• How a straight line is the longest path between two points in spacetime.
• How a light particle experiences space and time: its journey from one location in the universe to another involves zero spacetime distance, and is thus instantaneous!
• How Einstein’s special relativity has no difficulty handling accelerated observers.
Check back for details on the next lecture in Perimeter's Public Lectures Series