Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will discuss a quantum algorithm for the exact evaluation of the classical Potts partition function for a class of graphs (and hypergraphs) related to a family of classical cyclic codes. I will also present a mapping I recently constructed from quantum circuit instances to graphs and discuss some relationships to the classical Ising partition function.
Consider the quantum predictions for EPR-type measurements on two systems with Hilbert space of dimension at least 3 in any maximally entangled state. I show that the only possible hidden variables model of these probabilities that satisfies both Shimony\'s and Jarrett\'s condition of parameter independence (or `locality\') and Jones and Clifton\'s condition of conditional parameter independence (or `constrained locality\') is trivial, i.e. given by the quantum probabilities themselves. I shall attempt to discuss also the meaning of the conditions and of this result.
New and exotic phases as well as remarkable entanglement behaviors emerge in condensed matter systems (and quantum devices) living (fabricated) on graphs. To illustrate this, I will discuss the properties of Josephson junction networks fabricated on comb and star graphs and of spin models living on pertinent fiber-graphs.
Measurement-based quantum computation is unusual among quantum computational models in that it does not have an obvious classical analogue. In this talk, I shall describe some new results which shed some new light on this. In the one-way model [1], computation proceeds by adaptive single-qubit measurements on a multi-qubit entangled \'cluster state\'. The adaptive measurements require a classical computer, which processes the previous measurement outcomes to determine the correct bases for the following measurement.
Many string theorists and cosmologists have recently turned their attention to building and testing string theory models of inflation. One of the main goals is to find novel features that could distinguish stringy models from their field theoretic counterparts. This is difficult because, in most examples, string theory is used to derived an effective theory operating at energies well below the string scale.
Recently a simple but perhaps profound connection has been observed between the unitary solutions of the Yang-Baxter Equations (YBE) and the entangled Bell states and their higher dimensional (or more-qubit) extensions, the generalized GHZ states. We have shown that this connection can be made more explicit by exploring the relation between the solutions of the YBE and the representations of the extra-special two-groups.
TBA
A comprehensive graph theoretical and finite geometrical study of the commutation relations between the generalized Pauli operators of N-qudits is performed in which vertices/points correspond to the operators and edges/lines join commuting pairs of them. As per two-qubits, all basic properties and partitionings of the corresponding Pauli graph are embodied in the geometry of the generalized quadrangle of order two. Here, one identifies the operators with the points of the quadrangle and groups of maximally commuting subsets of the operators with the lines of the quadrangle.
We find that the overlapping of a topological quantum color code state, representing a quantum memory, with a factorized state of qubits can be written as the partition function of a 3-body classical Ising model on triangular or Union Jack lattices. This mapping allows us to test that different computational capabilities of color codes correspond to qualitatively different universality classes of their associated classical spin models.
A fundamental theorem of quantum field theory states that the generating functionals of connected graphs and one-particle irreducible graphs are related by Legendre transformation. An equivalent statement is that the tree level Feynman graphs yield the solution to the classical equations of motion. Existing proofs of either fact are either lengthy or are short but less rigorous. Here we give a short transparent rigorous proof. On the practical level, our methods could help make the calculation of Feynman graphs more efficient.