Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Attempts to go beyond the framework of local quantum field theory include scenarios in which the action of external symmetries on the quantum fields Hilbert space is deformed. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which in turns reflects a non-trivial momentum-dependent statistics.
An entirely new kind of band insulator was discovered recently. These new electronic states - called "topological insulators" - are fundamentally different from standard band insulators. They are distinguished by the fact that their edges (in the 2D case) or surfaces (in the 3D case) support gapless transport which is extremely robust. In the two dimensional case, topological insulators can be thought of as time reversal invariant analogues of integer quantum Hall states.
I consider some of the issues we face in trying to understand dark energy. Huge fluctuations in the unknown dark energy equation of state can be hidden in distance data, so I argue that model-independent tests which signal if the cosmological constant is wrong are valuable. These can be constructed to remove degeneracies with the cosmological parameters. Gravitational effects can play an important role. Even small inhomogeneity clouds our ability to say something definite about dark energy.
In this talk I present recent work on combining game theory, statistics, and control theory. This combination provides new techniques for predicting / controlling any system comprising humans, human groups (e.g., firms, tribes), and / or adaptive automated systems (e.g., reinforcement learning robots). As illustrations, I will focus on three projects: 1) Suppressing flutter in an airplane wing by controlling a set of autonomous micro-flaps at its trailing edge.
A plethora of Higgsless models have been proposed and we are in the peculiar situation where Fermilab & LHC results will be extremely interesting whether or not the Higgs boson is found. I present here a model where one of the sacred assumption of quantum field theory (renormalizability) is dropped. A precise prescription for the removal of the divergences guarantees both unitarity and predictivity. Interestingly the model is consistent if the Power counting criterion is enforced in a weak form (Weak Power Counting).
Check back for details on the next lecture in Perimeter's Public Lectures Series