Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
At the beginning of the 20th century Einstein published three revolutionary ideas that changed forever how we view Nature. At the beginning of the 21st century Einstein\'s thinking is shaping one of the key scientific and technological wonders of contemporary life: atomic clocks, the best timekeepers ever made. Such super-accurate clocks are essential to industry, commerce, and science; they are the heart of the Global Positioning System (GPS), which guides cars, airplanes, and hikers to their destinations.
With LHC commissioned in just a few month ahead, all sorts of ideas about physics beyond the standard model are being explored intensively. A strong-coupling chiral theory appearing at TeV scale remains a possibility but also a very hard scenario to study. When it comes to strongly coupled theories, lattice regularization is by far the most reliable method. But defining exact chiral gauge theory on the lattice remains a difficult problem on its own.
Within the context of F-theory compactified on Calabi-Yau fourfolds, we describe a class of string theory vacua which contain several features necessary in supersymmetric grand unified models of particle physics. Focussing on a simple class of local Calabi-Yau fourfolds, we explain how the matter content and superpotential in four dimensions are determined by a topological gauge theory. Along these lines, we present some minimal examples of GUT models.
If light scalar fields are present at the end of inflation, their nonequilibrium dynamics can produce non-Gaussian density perturbations. Lattice field theory simulations show that this effect can be very strong in the massless preheating model. It is therefore an important factor in assessing the viability of inflationary models. I present a phenomenological model that can be used to calculate the perturbations analytically.