Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
As LHC era is coming close, all sorts of ideas about physics beyond the standard model are being explored. It remains possible that a strong-coupling chiral theory could appear at TeV scale. When it comes to strongly coupled theories, lattice is still the most reliable and straightforward regularization method. But defining a chiral gauge theory on the lattice is formidable on its own. In this talk, I will present some most recent theoretical developments in attempt to tackle this problem, and explain some general theorems we proved for generic chiral gauge theories on lattice.
The handling of the constraints on initial data is a major issue in most canonical formulations of general relativity. Since the 1960s unconstrained initial data for GR that living on null hypersurfaces has been known, but no canoncial formulation based on these data was developed due to conceptual and technical difficulties. I will explain how these dificulties have been overcome and outline the resulting canonical framework.
Quantum Field Theory I course taught by Volodya Miransky of the University of Western Ontario
Lee Smolin has argued that one of the barriers to understanding time in a quantum world is our tendency to spatialize time. The question is whether there is anything in physics that could lead us to mathematically characterize time so that it is not just another funny spatial dimension. I will explore the possibility(already considered by Smolin and others) that time may be distinguished from space by what I will call a measure of Booleanity.
What does vacuum decay look like in an inflating, de Sitter, spacetime? Is it predominantly a quantum process of tunneling through the barrier, or a thermal process of tunneling over the barrier?
Quantum operations are known to be the most general state transformations that can be applied to parts of compound systems compatibly with the probabilistic structure of quantum mechanics. What about the most general transformations of quantum operations? It turns out that any such general transformation can be realized by a quantum network with an open slot in which the input operation can be inserted, thus programming the resulting circuit.
More than 40 years ago, Bell ruled out completely local hidden variable models as an explanation for quantum correlations. However, a new type of hidden variable model has recently been brought to light by the work of Leggett. Such a model has both local and non-local parts. Roughly speaking, having a local part means that the measurement outcomes can be guessed with better than 50% success. In this talk, I will explain that there exist quantum correlations for which any hidden variable model must have a trivial local part.
New spin foam models for gravity have been recently proposed to deal with the shortcomings of the Barrett-Crane model. In particular, they draw a closer connection between the Loop Quantum Gravity and the Spin Foam approaches to non perturbative quantum gravity. In this talk, I will present the construction for the case of Lorentzian signature and finite Immirzi parameter. An area operator can be defined and its spectrum agrees with the one defined in LQG. Finally, the amplitude is shown to be finite after a suitable regularization.
We give an overview of what we have called the \'LQG spinfoam models,\' that provide a spinfoam dynamics for LQG, for arbitrary values of the Barbero-Immirzi parameter in both Lorentzian and Euclidean signatures. The key motivation behind these models was to modify the Barrett-Crane model, by handling more carefully certain constraints, called simplicity constraints, which become second class in the quantum theory. As a result, the kinematics of the models exactly match those of LQG.
We study various aspects of power suppressed as well as exponentially suppressed corrections in the asymptotic expansion of the degeneracy of quarter BPS dyons in N=4 supersymmetric string theories. In particular we explicitly calculate the power suppressed corrections up to second order and the first exponentially suppressed corrections. We also propose a macroscopic origin of the exponentially suppressed corrections using the quantum entropy function formalism.
Check back for details on the next lecture in Perimeter's Public Lectures Series