Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome on the 15th of June 2006. It has been collecting data since July 2006. The instrument is composed of a silicon-microstrip magnetic spectrometer, a time-of-flight system, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
I will briefly review the construction of the graviton propagator in the context of LQG and I will show how the Barrett-Crane vertex fails to give the correct long-distance limit. The same kind of calculation however, can give the correct propagator using an alternative vertex with a specific asymptotic behavior. I will show that the BC difficulties disappear when using the EPRL model.
In this talk I will describe a topos formulation of consistent histories obtained using the topos reformulation of standard quantum mechanics put forward by Doering and Isham. Such a reformulation leads to a novel type of logic with which to represent propositions. In the first part of the talk I will introduce the topos reformulation of quantum mechanics. I will then explain how such a reformulation can be extended so as to include temporally-ordered collection of propositions as opposed to single time propositions.
The PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome on the 15th of June 2006. It has been collecting data since July 2006. The instrument is composed of a silicon-microstrip magnetic spectrometer, a time-of-flight system, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations.
Both classical probability theory and quantum theory lend themselves to a Bayesian interpretation where probabilities represent degrees of belief, and where the various rules for combining and updating probabilities are but algorithms for plausible reasoning in the face of uncertainty. I elucidate the differences and commonalities of these two theories, and argue that they are in fact the only two algorithms to satisfy certain basic consistency requirements.
The growth of matter perturbations in the presence of dark energy with small fluctuations depends on the speed of sound of these fluctuations and the comoving scale. The growth index can differ from the value that it takes in the limit of no dark energy perturbations by an amount comparable to the accuracy of future observations. This may contribute to a better characterization of the dark energy properties.
The warped geometry present in Randall-Sundrum (RS) models provides an elegant means by which to generate stable scale hierarchies. Given the famous hierarchy problem of the Standard Model, and the relatively small number of known mechanisms which may solve it, the RS model has deservedly received a lot of attention. However the construction of a completely realistic RS model remains difficult and requires a number of modifications beyond the minimal framework.
If primordial black holes are produced at the end of inflation, they should quickly decay via Hawking radiation. For the most part the radiation signature of these black holes will be wiped out, as the universe is still radiation dominated when they disappear. The exception to this would be a stochastic background of gravity waves. I present an algorithm by which the spectrum of radiation can be calculated, and discuss the dependence on the initial energy density and the number of relativistic species.
Check back for details on the next lecture in Perimeter's Public Lectures Series