Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this paper we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench.
It is often assumed that the first evidence for direct dark matter detection will come from experiments probing spin-independent interactions, because of higher sensitivities due to coherence effects. We explore the possibility of models that would be invisible in such experiments, but detectable via spin-dependent interactions. The existence of much larger (or only) spin-dependent tree-level interactions is not sufficient, due to potential spin-independent subdominant or loop-induced interactions.
TeV-scale models of quantum gravity predict the formation of mini black holes at the Large Hadron Collider. If these black holes can be treated, at least for part of their evolution, as semi-classical objects, they will emit Hawking radiation. In this talk we review the modeling of this evaporation process, particularly for the case when the black hole is rotating. A detailed understanding of the Hawking radiation is necessary for accurate simulations of black hole events at the LHC.
Imagine medicine that is predictive, personalized, preventive and participatory
Emergent gravity scenarios have become increasingly popular in recent times. In this talk I will review some evidence in this sense and discuss some lessons from toy models based on condensed matter analogues of gravity. These lessons suggest some (possibly) general features of the emergent gravity framework which not only can be tested with current astrophysical observations but can also improve our understanding of cosmological puzzles such as the dark energy one.
A new ensemble interpretation of quantum mechanics is proposed according to which the ensemble associated to a quantum state really exists: it is the ensemble of all the systems in the same quantum state in the universe. Individual systems within the ensemble have microscopic states, described by beables. The probabilities of quantum theory turn out to be just ordinary relative frequencies probabilities in these ensembles.
After quickly reviewing what we have learned about neutrinos during the past decade, I present an overview of different mechanisms responsible for non-zero neutrino masses, also discussing the possibility of experimentally deciding which one, if any, is correct.