Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The entanglement entropy of a pure quantum state of a bipartite system is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. Critical ground states of local Hamiltonians in one dimension have entanglement that diverges logarithmically in the subsystem size, with a universal coefficient that is is related to the central charge of the associated conformal field theory.
Recently several proposals are made for possible spin liquid and topological insulator phases in frustrated magnets. I will review some of these efforts and present some new results. Implications to real materials will also be made.
The entanglement entropy in conformal field theory was predicted to include a boundary term which depends on the choice of conformally invariant boundary condition. We have studied this effect in the Kondo model of a magnetic impurity in a metal, which exhibits a renormalization group flow between conformally invariant fixed points.
This talk is about a class of non-Fermi liquid metals, identified using the AdS/CFT correspondence.
Recent work has explored some aspects of entanglement in topological insulators. Notably, the entanglement spectrum has been shown to mimic certain properties of the low-energy fermionic modes found on real spatial boundaries. I will discuss the many-body entanglement spectrum of topological insulators and show that it matches the expected CFT character structure that has been previously shown to hold in fractional quantum Hall effect ground states.
We study a superconductor-ferromagnet-superconductor (SC-FM-SC) Josephson junction array deposited on top of a two-dimensional quantum spin Hall (QSH) insulator. The existence of Majorana bound states at the interface between SC and FM gives rise to charge-e tunneling, in addition to the usual charge-2e Cooper pair tunneling, between neighboring superconductor islands.
tba
I will discuss the question of thermal stability of a passive quantum memory, or finite-temperature topological order, in two or three spatial dimensions. We will analyze the criteria for thermal stability. We will present new results on Majorana fermion codes and a new extension of the 2D surface code to three dimensions.
TBA
Anyons are a special kind of excitations which are allowed in two dimensional systems, along with fermions and bosons. The topological nature of braiding of non-abelian anyons may allow a realization of quantum computing gates which is immune to noise. While the insensitivity of the such systems to a localized noise source is a built-in feature, an issue of great importance is more subtle: the robustness to slight deformations of the amiltonian describing the phase by perturbations which are locally tiny but are spread over through the entire system.
Check back for details on the next lecture in Perimeter's Public Lectures Series