Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Cosmic strings are a generic prediction of Grand Unified Theories that can leave a sufficient imprint in the Cosmic Microwave Background anisotropies to open an observational window into an otherwise unreachable high energy domain. Being formed as topological defects of a Higgs field, they are also naturally coupled to various other fields, that can lead to superconducting-like currents, hence radically changing their structure and properties.
The fluid/gravity correspondence relates hydrodynamic flows in D spacetime dimensions to black hole dynamics in D+1 dimensions. It is an extension of black hole thermodynamics, where charges are upgraded into local currents, and the Bekenstein-Hawking entropy - into a local entropy current. I will propose a definition for a generalized local current of Wald entropy relevant to higher-curvature gravity. As an example, I will consider 5d gravity with a U(1) gauge field and a gravitational Chern-Simons term.
Relativistic quantum information theory uses well-known tools coming from quantum information and quantum optics to study quantum effects provoked by gravity and to learn information about the spacetime. One can take advantage of our knowledge about quantum optics and quantum information theory to analyse from a new perspective the effects produced by the gravitational interaction.
The history of physics, from Galileo's spatialization of time to Einstein's block universe, and on to Julian Barbour's timeless quantum cosmology, tells a story by which time is demoted from a fundamental aspect of experience to an emergent illusion in a world held to be fundamentally timeless. The question I would like to address is, is this correct, or will the next stage in the development of physics require a rediscovery of time as a primary aspect of nature?
In his article `More is Different', P W Anderson (1972) sensitized the physics community about importance of emergence, by using concepts such as broken symmetry, emergent hierarchical structures, constructionists converse of reductionism etc. The manifestation of complexity and hierarchy in the quantum many particle systems go beyond broken symmetries. In certain quantum systems we have the opposite - emergence of new local gauge symmetries. This idea was introduced, for example, for Mott insulators, by Anderson and us in 1988.