A A   
Connect with us:      

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

 

Thursday Sep 21, 2017
Speaker(s): 

 

Wednesday Sep 20, 2017
Speaker(s): 

While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT), indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy-compression and approximate quantum error correction, both of which are predicted in holography.

Scientific Areas: 

 

Wednesday Sep 20, 2017
Speaker(s): 

 

Tuesday Sep 19, 2017
Speaker(s): 

What can machine learning teach us about quantum mechanics? I will begin with a brief overview of attempts to bring together the two fields, and the insights this may yield. I will then focus on one particular framework, Projective Simulation, which describes physics-based agents that are capable of learning by themselves. These agents can serve as toy models for studying a wide variety of phenomena, as I will illustrate with examples from quantum experiments and biology.

Collection/Series: 
Scientific Areas: 

 

Tuesday Sep 19, 2017
Speaker(s): 

Branch point twist fields play an important role in the study of measures of entanglement such as the Rényi entropies and the Negativity. In 1+1 dimensions such measures can be written in terms of multi-point functions of branch point twist fields. For 1+1-dimensional integrable quantum field theories and also in conformal field theory much is known about how to compute correlation functions and, with the help of the twist field, this knowledge can be exploited in order to gain new insights into the properties of various entanglement measures.

Collection/Series: 
Scientific Areas: 

Pages