Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Lattice QCD in this decade has succeeded in producing essential results for crucial components of Standard Model phenomenology such as constraints on the rho-eta plane. Much more will be required of lattice gauge theory in the LHC era: sub-per cent precision in QCD quantities and the ability to calculate in strongly interacting sectors of Beyond-the-Standard-Model theories such as SUSY or technicolor. I will review the status of current calculations and the prospects for accomplishing what needs to be done in the coming years.
The Higgs boson is the only scalar particle in the Standard Model. Precision electroweak analyses suggest that it should be light -- less than 200 GeV. These facts combined with the speculative nature of all electroweak symmetry breaking discussions imply significant uncertainty in discovering a Higgs boson. I discuss the unique aspects of a Higgs sector, highlight the New Physics origins of uncertainty for its phenomenology, and suggest a broader framework with which to approach Higgs boson phenomenology at the LHC.
We formulate non-anticommutative supersymmetry in two dimensions using differential operators acting on the component fields. We then use these operators to give a compact expression for the one-loop divergences in the non-anticommutative Kahler sigma model.
The smaller Dark Matter structures predicted in the CDM scenario have a mass in the range [10e-12;10e-4] Msun, depending on the underlying particle physics. It is however not clear what is the inner DM structure of such halos, nor which is the real survival probability during mergers. We show how these open questions result in a large uncertainty in the prediction of the observability of such halos with indirect detection tecniques.