Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Cosmo Seminar
We show that when a volume of quark matter rotates, there is an axial current flowing along the rotation axis. This effect has been overlooked in all previous treatments of relativistic fluids until calculations using gauge/gravity duality indicate it existence. The effect is a manifestation of triangle anomalies, and may exhibit itself in heavy ion collisions with nonzero impact parameter.
This course begins with a thorough introduction to quantum field theory. Unlike the usual quantum field theory courses which aim at applications to particle physics, this course then focuses on those quantum field theoretic techniques that are important in the presence of gravity. In particular, this course introduces the properties of quantum fluctuations of fields and how they are affected by curvature and by gravitational horizons.
After a review of the axiomatic formulation of quantum theory, the generalized operational structure of the theory will be introduced (including POVM measurements, sequential measurements, and CP maps). There will be an introduction to the orthodox (sometimes called Copenhagen) interpretation of quantum mechanics and the historical problems/issues/debates regarding that interpretation, in particular, the measurement problem and the EPR paradox, and a discussion of contemporary views on these topics.
Binary neutron stars are among the most important sources of gravitational waves which are expected to be detected by the current or next generation of gravitational wave detectors, such as LIGO and Virgo, and they are also thought to be at the origin of very important astrophysical phenomena, such as short gamma-ray bursts. In order to describe the dynamics of these events one needs to solve the full set of general relativistic magnetohydrodynamics equations through the use of parallel numerical codes.