Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Maki Takahashi
Tony Downes
Quantum error correcting codes and topological quantum order (TQO) are inter-connected fields that study non-local correlations in highly entangled many-body quantum states. In this talk I will argue that each of these fields offers valuable techniques for solving problems posed in the other one. First, we will discuss the zero-temperature stability of TQO and derive simple conditions that guarantee stability of the spectral gap and the ground state degeneracy under generic local perturbations. These conditions thus can be regarded as a rigorous definition of TQO.
I will present a recent result showing that general relativity admits a dual description in terms of a 3D scale invariant theory. The dual theory was discovered by starting with the basic observation that, fundamentally, all observations can be broken down into local comparisons of spatial configurations. Thus, absolute local spatial size is unobservable. Inspired by this principle of "relativity of size", I will motivate a procedure that allows the refoliation invariance of general relativity to be traded for 3D local scale invariance.
Basic epistemological considerations suggest that the laws of nature should be scale invariant and no fundamental length scale should exist in nature. Indeed, the standard model action contains only two terms that break scale invariance: the Einstein-Hilbert term and the Higgs mass term.
Tamara Davis
The last decade of astrophysics has shown more than ever before that cosmology can teach us about the nuts-and-bolts of basic physics. This has been driven by the discovery of the accelerating universe (dark energy) --- the theories being proposed to explain dark energy often invoke new physics such as brane-worlds arising from fledgling models of quantum-gravity. It has become evident that the large timescales and spatial-scales probed by cosmology allow us to learn about fundamental physics in a way inaccessible to any earth-bound experiment.
I thought I was a good teacher until I discovered my students were just memorizing information rather than learning to understand the material. Who was to blame? The students? The material? I will explain how I came to the agonizing conclusion that the culprit was neither of these. It was my teaching that caused students to fail! I will show how I have adjusted my approach to teaching and how it has improved my students' performance significantly.
I will review some recent advances on the line of deriving quantum field theory from pure quantum information processing. The general idea is that there is only Quantum Theory (without quantization rules), and the whole Physics---including space-time and relativity---is emergent from the processing. And, since Quantum Theory itself is made with purely informational principles, the whole Physics must be reformulated in information-theoretical terms.