Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We present a quantization method based on theEhrenfest theorem embedded in an extended algebraic structure capableof consistently describing hybrid quantum-classical systems, where thestandard quantum and classical mechanics are two limiting cases. TheWigner phase space formulation and the Schordinger equation are foundto be two alternative representations of the quantum case while theKoopman-von Neumann equation is the corresponding classicalcounterpart.
For a long time it was believed that a classical nonlinear theory of a single massive spin-2 state does not exist.
We evaluate the partition function of three dimensional general relativity with a negative cosmological constant, including all known perturbative and non-perturbative contributions to the sum over geometries.
For a long time it was believed that a classical nonlinear theory of a single massive spin-2 state does not exist.
In this talk, I am going to test the concordance cosmology in three different cosmic scales. (1) On the super-horizon scale, “Copi etal. (2009)” have been arguing that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, LCDM cosmology. I am going to argue that the “ad-hoc” discrepancy is due to the sub-optimal estimator of the low-l multipoles, and a posteriori statistics, which exaggerates the statistical significance.