Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will describe our recent work on a new topological phase of matter: topological Weyl semimetal. This phase arises in three-dimensional (3D) materials, which are close to a critical point between an ordinary and a topological insulator. Breaking time-reversal symmetry in such materials, for example by doping with sufficient amount of magnetic impurities, leads to the formation of a Weyl semimetal phase, with two (or more) 3D Dirac nodes, separated in momentum space.
TBA
I discuss new types of CP violating observables that arise in three body decays that are dominated by an intermediate resonance. If two interfering diagrams with different orderings of the final state particles exist, the required CP even phase arises due to the different virtualities of the resonance in each of the two diagrams. Using momentum asymmetries, I demonstrate that CP violation can be seen in this way at the LHC and future colliders.
In this talk I will give an overview of localization and some of its applications for QFTs in three dimensions. I will start by reviewing the localization procedure for N=2 supersymmetric gauge theories in three dimensions on S^3. I will then describe some of the applications to field theory dualities and to holography, and the possibility of extracting information about RG fixed points from the localized partition function.
It is my contention that non-commutative geometry is really "ordinary geometry" carried out in a non-commutative logic. I will sketch a specific project, relating groupoid C*-algebras to toposes, by means of which I hope to detect the nature of this non-commutative logic.