Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
It has long been known that a metal near an instability
to antiferromagnetism also has a weak-coupling Cooper instability to
spin-singlet d-wave-like superconductivity.
However, the theory of the antiferromagnetic quantum
critical point flows to strong-coupling in two spatial dimensions, and so the
fate of the superconductivity has also been unclear.
The world's most ambitious scientific experiment
is buried 100 meters underground, straddling Switzerland and France. A billion
times every minute, the Large Hadron Collider (LHC) slams together protons,
while four giant detectors watch closely. - So how does the Large Hadron
Collider work? - Why can slamming tiny particles into each other provide clues
about the nature of all space and time? - What mysteries are physicists trying
to solve with data from the LHC? - How does the cutting edge of particle
This presentation
will cover a number of topics in cosmology today including dark energy, dark
matter and the cosmological constant.
A
crucial question in any approach to quantum information processing
is: first, how are classical bits
encoded
physically in the quantum system, second, how are they then manipulated and,
third, how are they finally read out?
I'll describe a special information-theoretic property of
quantum field theories with holographic duals: the mutual informations among
arbitrary disjoint spatial regions A,B,C obey the inequality I(A:BC) >=
I(A:B)+I(A:C), provided entanglement entropies are given by the Ryu-Takayanagi
formula. Inequalities of this type are known as monogamy relations and are
characteristic of measures of quantum entanglement. This suggests that
correlations in holographic theories arise primarily from entanglement rather
The fundamental properties of quantum
information and its applications to computing and cryptography have been
greatly illuminated by considering information-theoretic tasks that are
provably possible or impossible within non-relativistic quantum mechanics. In this talk I describe a general framework
for defining tasks within (special) relativistic quantum theory and illustrate
it with examples from relativistic quantum cryptography.
We present a general, analytic recipe to compute the entanglement that is generated between arbitrary, discrete modes of bosonic quantum fields by Bogoliubov transformations. Our setup allows the complete characterization of the quantum correlations in all Gaussian field states. Additionally, it holds for all Bogoliubov transformations. These are commonly applied in quantum optics for the description of squeezing operations, relate the modedecompositions of observers in different regions of curved spacetimes, and describe observers moving along non-stationary trajectories.
Check back for details on the next lecture in Perimeter's Public Lectures Series