Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Our starting point is a particular `canvas' aimed to `draw' theories of physics, which has symmetric monoidal categories as its mathematical backbone. With very little structural effort (i.e. in very abstract terms) and in a very short time this categorical quantum mechanics research program has reproduced a surprisingly large fragment of quantum theory. Philosophically speaking, this framework shifts the conceptual focus from `material carriers' such as particles, fields, or other
Macroscopic quantum coherence
We apply newly-developed techniques for studying perturbative scattering amplitudes to gauge theories with matter. It is well known that the N=4 SYM theory has a very simple S-matrix; do other gauge theories see similar simplifications in their S-matrices? It turns out the one-loop gluon S-matrix simplifies if the matter representations satisfy some group theoretic constraints. In particular, these constraints can be expressed as linear Diophantine equations involving the higher order Indices (or higher-order Casimirs) of these representations.
Multipartite quantum states constitute a (if not the) key resource for quantum computations and protocols. However obtaining a generic, structural understanding of entanglement in N-qubit systems is still largely an open problem. Here we show that multipartite quantum entanglement admits a compositional structure. The two SLOCC-classes of genuinely entangled 3-qubit states, the GHZ-class and the W-class, exactly correspond with the two kinds of commutative Frobenius algebras on C^2, namely `special' ones and `anti-special' ones.