Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The counter-intuitive phenomena in quantum mechanics are often based on the counter-factual (or virtual) processes. The famous example is the Hardy paradox, which has been recently solved in two independent experiments. Also, the delayed choice experiment and one of quantum descriptions of the closed time like curves can be also examples of the counter-intuitive phenomena. The counter-factual processes can be characterized by the weak value initiated by Yakir Aharonov and his colleagues.
AdS/CFT has proven itself a powerful tool in extending our understanding of strongly coupled quantum theories. While studies of AdS/CFT have predominantly focused on tree level calculations, there has been growing interest in the loop effect recently. We studied the 1-loop correction to the gauge boundary-to-boundary correlator due to its coupling to a complex scalar field. In this talk, I would outline our main results, explain the Cutkosky rule in AdS space, and discuss an extra divergence we found in both real and imaginary part of the loop integral.
I'll describe a connection between uncertainty relations, information locking and low-distortion embeddings of L2 into L1. Exploiting this connection leads to the first explicit construction of entropic uncertainty relations for a number of measurements that is polylogarithmic in the dimension d while achieving an average measurement entropy of (1-e) log d for arbitrarily small e. From there, it is straightforward to obtain the first strong information locking scheme that is efficiently computable using a quantum computer.
The average quantum physicist on the street believes that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian $H=p^2+ix^3$, which is obviously not Dirac Hermitian, has a real positive discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory.
Check back for details on the next lecture in Perimeter's Public Lectures Series