Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
One might have hoped that philosophers had sorted out what ‘truth’ is supposed to be by now. After all, Aristotle offered what seems to be a clear and simple characterization in his Metaphysics. So perhaps it is surprising (and then again perhaps it isn’t), that contemporary philosophers have not settled on a consensus regarding the nature of truth to this day.
Gauge Invariant Cosmological Perturbation theory from 3+1 formulation of General Relativity. This course will aim to study in detail the 3+1 decomposition in General Relativity and use the formalism to derive Gauge invariant perturbation theory at the linear order. Some applications will be studied.
Gauge Invariant Cosmological Perturbation theory from 3+1 formulation of General Relativity. This course will aim to study in detail the 3+1 decomposition in General Relativity and use the formalism to derive Gauge invariant perturbation theory at the linear order. Some applications will be studied.
Coincident detections of electromagnetic and gravitational wave signatures from the merger of supermassive binary black holes are the next observational grand challenge. Such detections will provide a wealth of opportunities to study gravitational physics, accretion physics, and cosmology. Understanding the conditions under which coincidences of electromagnetic and gravitational wave signatures arise during supermassive black hole mergers is therefore of paramount importance, requiring multi-scale/physics computational modeling.
Gauge Invariant Cosmological Perturbation theory from 3+1 formulation of General Relativity. This course will aim to study in detail the 3+1 decomposition in General Relativity and use the formalism to derive Gauge invariant perturbation theory at the linear order. Some applications will be studied.
Since its launch in 2007, the website Galaxy Zoo (www.galaxyzoo.org) has become the largest astronomical collaboration in history, involving more than 250,00 volunteers in classifying galaxies. Humans outperform computers at this kind of visual classification, and the results from Galaxy Zoo have been spectacular.
We study a novel state of matter: algebraic Bose liquid (ABL). An ABL is a quantum bosonic system on a 2d or 3d lattice that does not break any symmetry in its ground state, but still able to stabilize a gapless spectrum. At high energy these boson systems only have the simplest U(1) global symmetry associated with the conservation of boson number, but at low energy the system is described by self-dual gauge fields. In this talk we will present two new ABL phases emerged from a quantum Boson model on the cubic lattice.