Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
TBA
Strings vs. particles. Branes and Holography in quantum gravity.
There has been a dream that matter and gravity can be unified in a fundamental theory of quantum gravity. One of the main philosophies to realize this dream is that matter may be emergent degrees of freedom of a quantum theory of gravity. We study the propagation and interactions of braid-like chiral states in models of quantum gravity in which the states are (framed) four-valent spin networks embedded in a topological three manifold and the evolution moves are given by the dual Pachner moves. There are results for both the framed and unframed case.
The Problem of Time in Quantum Gravity and Cosmology
Advanced General Relativity
We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process, requiring only initial product state preparation. Both the quantum circuit and its input are encoded in an initial canonical basis state of the qudit chain. The computational process is then carried out by the autonomous Hamiltonian time evolution.
Advanced General Relativity
Strings vs. particles. Branes and Holography in quantum gravity.
TBA
The history of human knowledge is often highlighted by our efforts to explore beyond our apparent horizon. In this talk, I will describe how this challenge has now evolved into our quest to understand the physics at/beyond the cosmological horizon, some twenty orders of magnitude above Columbuss original goal.