Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

Monday Apr 16, 2012

We propose a framework to describe and simulate a class of many-body quantum states. We do so by considering joint eigenspaces of sets of monomial unitary matrices, called "M-spaces"; a unitary matrix is monomial if precisely one entry per row and column is nonzero. We show that M-spaces encompass various important state families, such as all Pauli stabilizer states and codes, the AKLT model, Kitaev's anyon models, W states and several others. We furthermore demonstrate how basic properties of M-spaces can transparently be understood by manipulating their monomial stabilizer groups.

Collection/Series: 
Scientific Areas: 

 

Friday Apr 13, 2012
Speaker(s): 

As helium-4 is cooled below 2.17 K in undergoes a phase transition to a state of matter known as a superfluid which supports flow without viscosity. This type of dissipationless transport can be observed by forcing helium to travel through a narrow constriction that the normal liquid could not penetrate. Recent advances in nanofabrication techniques allow for the construction of smooth pores with nanometer radii, that approach the truly one dimensional limit.

Collection/Series: 
Scientific Areas: 

 

Friday Apr 13, 2012
Speaker(s): 

We establish a tight relationship between two key quantum theoretical notions: non-locality and complementarity. In particular, we establish a direct connection between Mermin-type non-locality scenarios, which we generalise to an arbitrary number of parties, using systems of arbitrary dimension, and performing arbitrary measurements, and a new stronger notion of complementarity which we introduce here.    Our derivation of the fact that strong complementarity is a necessary condition for a Mermin scenario provides a crisp operational interpretation for strong complementarity.

Collection/Series: 
Scientific Areas: 

Pages

Next Public Lecture

Check back for details on the next lecture in Perimeter's Public Lectures Series