Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Gauge theories with deformed products of fields in the lagrangian
constitute an interesting generalization of the gauge/string duality.
We review a systematic procedure to find the string duals of such
theories, called the TsT transformation, and illustrate its properties
by means of a few examples.
In my talk I will provide an overview of the applications of Wilson's
TBA
"A Hamiltonian action of a Lie group on a symplectic manifold $(M,\omega)$ gives rise to a gauge theoretic deformation of the
Cauchy-Riemann equations, called the symplectic vortex equations. Counting solutions of these equations over the complex plane leads to a quantum version of the Kirwan map. In joint work with Christopher Woodward, we interpret this map as a weak morphism of cohomological field theories."
This talk will discuss, illustrated by a toy example, how to construct "higher-algebraic" quantum field theories using groupoids. In particular, the groupoids describe configuration spaces of connections, together with their gauge symmetries, on spacetime, space, and boundaries of regions in space. The talk will describe a higher-algebraic "sum over histories", and how this construction is related to usual QFT's, and particularly the relation to the case of the Chern-Simons theory.
The space of regular noncommutative algebras includes regular graded Clifford algebras, which correspond to base point free linear systems of quadrics in dimension n in P^n. The schemes of linear modules for these algebras can be described in terms of this linear system. We show that the space of line modules on a 4 dimensional algebra is an Enriques surface called the Reye congruence, and we extend this result to higher dimensions.
The classical "split" rational R-matrix Poisson bracket structure on the space of rational connections over the Riemann sphere provides a natural setting for studying deformations. It can be shown that a natural set of Poisson commuting spectral invariant Hamiltonians, which are dual to the Casimir invariants of the Poisson structure, generate all deformations which, when viewed as nonautonomous Hamiltonian systems, preserve the generalized monodromy of the connections, in the sense of Birkhoff (i.e., the monodromy representation, the Stokes parameters and connection matrices).
I will discuss the metric behavior of the Kahler-Ricci flow on Hirzebruch surfaces assuming that the initial metric is invariant under a maximal compact subgroup of the automorphism group. I will describe how, in the sense of Gromov-Hausdorff, the flow either shrinks to a point, collapses to P^1 or contracts an exceptional divisor. This confirms a conjecture of Feldman-Ilmanen-Knopf. This is a joint work with Jian Song.
"In this joint work with Jingyi Chen and Weiyong He, we prove
existence of longtime smooth solutions to mean curvature flow of entire
Lipschitz Lagrangian graphs. A Bernstein type result for translating
solitons is also obtained."