Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Violation of unitarity in black hole evaporation has been puzzling physicist since the seminal work of Hawking in the seventies. Although there are hopes for a resolution of the problem in a full theory of quantum gravity, it has eluded us so far. Even less ambitious efforts considering only quantum corrections beyond the external field approximation have proven hard to attack in 4 dimensions. All these obstacles directed researchers to investigate the black hole evaporation problem in simpler 2-dimensional models.
Hawking's discovery of black holes radiance along with Bekenstein's conjecture of the generalized second law of thermodynamics inspired a conceptually pleasing connection between gravity, thermodynamics and quantum theory. However, the discovery that the spectrum of the radiation is in fact thermal, together with the no-hair theorem, has brought along with it some undesirable consequences, most notably the information loss paradox.
We construct the q-deformed spinfoam vertex amplitude using Chern-Simons theory on the boundary 3-sphere of the 4-simplex. The rigorous definition involves the construction of Vassiliev-Kontsevich invariant for trivalent knot graph. Under the semiclassical asymptotics, the q-deformed spinfoam amplitude reproduce Regge gravity with cosmological constant at nondegenerate critical configurations.
In general relativity, the fields on a black hole horizon are obtained from those in the bulk by pullback and restriction. In quantum gravity, it would be natural to obtain them in the same manner. This is not fully realized in the quantum theory of isolated horizons in loop quantum gravity, in which a Chern-Simons phase space on the horizon is quantized separately from the bulk. I will outline an approach in which the quantum horizon degrees of freedom are simply components of the quantized bulk degrees of freedom.
In this talk I will describe how to calculate the exact partition function for free bosons on the plane with lacunae using world line effective field theory. It will be shown that the partition function for a plane with two spherical holes can be calculated by matching exactly for the infinite set of Wilson coefficients and then performing the ensuing Gaussian integration. This same partition function can also be calculated using conformal field theory technique and the equality of the two results will be shown.
Using an approach originally developed to study gravitational wave absorption in black hole binary systems, we generalize the EFT of single clock inflation to include dissipative effects. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do no contribute to the density perturbations at late time, and moreover they are predominately sensitive to the field whose fluctuations control the end of inflation.
It's usually assumed that youtube is just for kittens, babies, and music videos. However, youtube is also the highest-traffic site on the internet and it turns out it's actually a darn good place to teach people about physics!
Check back for details on the next lecture in Perimeter's Public Lectures Series