Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we demonstrate that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce a partition of the system into two subsystems both of which extend throughout the bulk in all directions.
A persistent mystery of quantum theory is whether it admits an interpretation that is realist, self-consistent, model-independent, and unextravagant in the sense of featuring neither multiple worlds nor pilot waves. In this talk, I will present a new interpretation of quantum theory -- called the minimal modal interpretation (MMI) -- that aims to meet these conditions while also hewing closely to the basic structure of the theory in its widely accepted form.
We report on recent advances in understanding the non-local symmetries of quantum field theory, notably gauge theory. The symmetries relate topologically distinct sectors of the field space. We study these symmetries in some detail in the context of the BPS/CFT correspondence. We also introduce a notion of qq-characters, which generalize the q-characters of quantum affine algebras, introduced by E. Frenkel and N. Reshetikhin, and conjecturally are related to the (q, t)-characters introduced by H. Nakajima.
With the remarkable performance of the ATLAS and CMS detectors, jets at the LHC can now be characterized not just by their overall direction and energy but also by their substructure. At the same time, there has been substantial progress in predicting the properties of jets from first principles. In this talk, I highlight the ways that theoretical studies of jet substructure have enhanced our understanding of QCD, including examples that blur the boundary between perturbative and nonperturbative physics.
Gravitational lensing of the cosmic microwave background is emerging as a useful cosmological tool. Recent measurements have been made by several experiments (including the South Pole Telescope, which will be featured), with rapidly improving precision. These measurements can be used for many purposes, including studying the connection between dark matter and galaxies on large scales, measuring the clustering of matter at z~3, and improving the precision of possible measurements of gravitational radiation from inflation.