Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The by-now classic Ryu-Takayanagi formula associates the entanglement entropy of a spatial region in a holographic field theory with the area of a certain minimal surface in the bulk. Despite its simplicity and beauty, this formula raises a number of stubborn conceptual problems. I will present a reformulation which does not involve the areas of surfaces. This reformulation leads to a picture of entanglement in the field theory being carried by Planck-thickness "bit threads" in the bulk.
In this talk I will propose a new mechanism for thermal dark matter freezeout, termed Co-Decaying Dark Matter. Multi-component dark sectors with degenerate particles and out-of-equilibrium decays can co-decay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles, rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross-section, which is predicted to be boosted, and the decay rate of the dark sector particles.
The possibility of observing quantum gravitational phenomena, viewed as remote until not long ago, is increasingly considered to be plausible. A potentially observable phenomenon is the decay of black holes via a quantum gravitational tunneling akin to standard nuclear decay. Loop quantum gravity can be used to compute the corresponding lifetime. This could be much shorter than the Hawking radiation time, rendering the effect astrophysically relevant.
Check back for details on the next lecture in Perimeter's Public Lectures Series