Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Population expansions are ubiquitous in nature. They control the speed of many important dynamical processes, including multicellular development, biological evolution and epidemic outbreaks.
Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding what is feasible. In this chapter I argue that the science of quantum computing illuminates the foundations of complexity theory by emphasising that its fundamental concepts are not model-independent. However this does not, as some have suggested, force us to radically revise the foundations of the theory.
Recently a boundary energy-momentum tensor Tzz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an "anomaly" which is one-loop exact, Tzz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts Tzz.
Utilizing the Fermi measurement of the gamma-ray spectrum toward the Galactic Center, we derive some of the strongest constraints to date on the dark matter (DM) lifetime in the mass range from hundreds of MeV to above an EeV. Our profile-likelihood based analysis relies on 413 weeks of Fermi Pass 8 data from 200 MeV to 2 TeV, along with up-to-date models for diffuse gamma-ray emission within the Milky Way.
Cosmology has seen great progress thanks to precision measurements and is bound to greatly benefit from upcoming Large Scale Structure and Cosmic Microwave Background data. I will point out a number of interesting directions. In particular, I discuss how the microphysics of inflation may be tested in galaxy surveys through “fossil” signatures originating from squeezed primordial correlations.
A central theme of modern condensed matter physics is the study of topological quantum matter enabled by quantum mechanics, which provides a further "topological" twist to the classical theory of ordered phases.