Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday Dec 08, 2015

In light of the upcoming Generation 2 (G2) direct-detection experiments attempting to record dark matter scattering with nuclei in underground detectors, it is timely to inquire about their ability to single out the correct theory of dark-matter-baryon interactions, in case a signal is observed. I will present a recent study in which we perform statistical analysis of a large set of direct-detection simulations, covering a wide variety of operators that describe scattering of fermionic dark matter with nuclei.

Collection/Series: 
Scientific Areas: 

 

Tuesday Dec 08, 2015
Speaker(s): 

In recent years, entanglement has become a new frontier with applications across several fields in physics. Nevertheless, simple conceptual pictures and practical ways to quantify entanglement in many-body systems have remained elusive even for the simplest models. In this talk, I will consider entanglement and Renyi entropies as well as quantum (mutual, tripartite, etc.) information in a quantum field theory. For free field theories, I will show that quantum entropies and information can be computed and understood by analogy with the thermal Casimir effect in one higher dimension.

Collection/Series: 
Scientific Areas: 

 

Monday Dec 07, 2015
Speaker(s): 

Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a systematic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Dec 03, 2015
Speaker(s): 

 

Thursday Dec 03, 2015
Speaker(s): 

I will review the possible role in Geometric Langlands

of N=4 boundary conditions in four-dimensional supersymmetric Yang Mills theory.

The action of S-duality on such boundary conditions can be understood

in terms of symplectic duality.

Scientific Areas: 

 

Thursday Dec 03, 2015
Speaker(s): 

The mergers of black hole-neutron star and neutron star-neutron star binaries are one of the primary targets for Advanced LIGO and other gravitational wave detectors now coming online. In addition, these events may source a number of electromagnetic counterparts, including short gamma-ray bursts and ejecta powered transients. Particularly in the case of binaries that are dynamically-assembled in dense stellar regions like globular clusters, these mergers may involve neutron stars with non-negligible spin.

Collection/Series: 
Scientific Areas: 

 

Thursday Dec 03, 2015
Speaker(s): 

I will present a generalization of the spinor approach of Euclidean loop quantum gravity to the 3D Lorentzian case, where the gauge group is the noncompact SU(1,1). The key tool of this generalization is the recoupling theory between unitary infinite-dimensional representations and non-unitary finite-dimensional ones, needed to generalize the Wigner-Eckart theorem to tensor operators for SU(1,1).

Collection/Series: 
Scientific Areas: 

 

Wednesday Dec 02, 2015
Speaker(s): 

Emerging techniques and technologies, drawn from many fields of science and medicine, are allowing us to peer inside the human body with unprecedented sensitivity and to probe the fundamental processes of life – in real time. TRIUMF’s Life Sciences Division is making such studies possible with isotopes, short-lived elements that are harnessed and incorporated into next generation pharmaceuticals designed to provide incredible insight into the complex systems that make up life.

Collection/Series: 

Pages