Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The thermodynamics of black holes will be reviewed and recent developments incorporating pressure into the first law described. The asymptotically AdS Kerr metric has a van der Waals type critical point with a line of first order phase transitions terminating at a critical point with mean field exponents. The phase structure and stability of black holes in higher dimensions will also be described.
We consider isolated interacting quantum systems that are taken out of equilibrium instantaneously (quenched). We study numerically and analytically the probability of finding the initial state later on in time (the so-called fidelity or Loschmidt echo), the relaxation time of the system, and the evolution of few-body observables. The fidelity decays fastest for systems described by full random matrices, where simultaneous many-body interactions are implied.
I will present results for the quench dynamics of one-dimensional interacting bosons under two circumstances. One is when the bosons are in the vicinity of the superfluid-Mott quantum critical point, while the second is when the bosons are in a disordered potential which can drive the system into a Bose glass phase. I will show that the dynamics following a quench can be quite complex by being characterized by three regimes.
We consider quantum quenches in one dimensional Bose gases where we prepare the gas in the ground state of a parabolic trap and then release it into a small cosine potential. This cosine potential breaks the integrability of the 1D gas which absent the potential is described by the Lieb-Liniger model. We explore the consequences of this cosine potential on the thermalization of the gas. We argue that the integrability breaking of the cosine does not immediately lead to ergodicity inasmuch as we demonstrate that there are residual quasi-conserved quantities post-quench.
Locally covariant quantum field theory (LCQFT) has proven to be a very successful framework for QFT on curved spacetimes. It is natural to ask, how far these ideas can be generalized and if one can learn something about quantum gravity, using LCQFT methods. In particular, one can use the relative Cauchy evolution to formulate the notion of background independence. Recently we have proven that background independence in this sense holds for effective quantum gravity, formulated as a perturbative QFT.
Astronomical observation suggests the existence of near-extreme Kerr black holes whose horizons spin at nearly the speed of light. Properties of diffeomorphisms imply that the dynamics of the high-redshift near-horizon region of near-extreme Kerr, which includes the innermost-stable-circular-orbit (ISCO), is governed by an infinite-dimensional emergent conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes.
We describe a new diagnostic for many-body wavefunctions which generalizes the spatial bipartite entanglement entropy. By was of illustration, for a two-component wavefunction of heavy and light particles, a partial (projective) measurement of the coordinates of the heavy (but not light) particles is first performed, and then the entanglement entropy of the projected wavefunction for the light particles is computed.
It has been argued recently that, through a phenomenon of many-body localization, closed quantum systems subject to sufficiently strong disorder would fail to thermalize. In this talk I will describe a real time renormalization group approach, which offers a controlled description of universal dynamics in the localized phase. In particular it explains the ultra-slow entanglement propagation in this state and identifies the emergent conserved quantities which prevent thermalization.