Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In this talk I will expose different results concerning the properties of quantum many-body systems: on the one hand, I will introduce the concept of fine-grained entanglement loss together with its relation with majorization relations along parameter flows and Renormalization Group flows. The machinery of Conformal Field Theory will allow us to derive very general analytical properties, and some examples -like the XY quantum spin chain- will also be considered.
From Monday, January 30th to Thursday, February 2nd, Senarath (Shanta) de Alwis will give a four lecture mini-course on `Potentials for light moduli in N=1 supergravity and string theory'. In these lectures, Shanta will be describing some of the technical ingredients used in recent constructions of inflation in string theory. The lectures will be given at a level appropriate for advanced graduate students and will be held in the Bob Room at 11:00am each day.
From Monday, January 30th to Thursday, February 2nd, Senarath (Shanta) de Alwis will give a four lecture mini-course on `Potentials for light moduli in N=1 supergravity and string theory'. In these lectures, Shanta will be describing some of the technical ingredients used in recent constructions of inflation in string theory. The lectures will be given at a level appropriate for advanced graduate students and will be held in the Bob Room at 11:00am each day.
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
An expected 90 day robotic odyssey on Mars has stretched into a two year scientific marathon. Dr. Grant, a geologist with the Center for Earth and Planetary Studies, helped pick the landing sites and works on day-to-day operations of the Spirit and Opportunity Rovers. Youll see the latest photos, learn what Martian mysteries have been uncovered and find out how scientists plan to push the limits of future robots in space. Dr. John A. Grant, III joined the Smithsonian in the fall of 2000 as a Geologist at the Center for Earth and Planetary Studies at the National Air and Space Museum.
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
It is shown that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with non-standard field fluctuations (quantum non-equilibrium). It is shown that such non-equilibrium vacua lead to statistical anomalies, such as a breaking of scale invariance for the primordial power spectrum. The results depend only weakly on the details of the de Broglie-Bohm dynamics.
The problem of associating beables (hidden variables) to QFT, in the spirit of what Bohm did for nonrelativistic QM, is not trivial. In 1984, John Bell suggested a way of solving the problem, according to which the beables are the positions of fermions, in a discretized version of QFT, and obey a stochastic evolution that simulates all predictions of QFT. In the continuum limit, it will be shown that the Bell model becomes deterministic and that it is related to the choice of the charge density as a beable. Moreover, the charge superselection rule is a consequence of the Bell model.
Check back for details on the next lecture in Perimeter's Public Lectures Series