Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Course Description coming soon.
I will derive the gravitonic Casimir effect with non-idealized boundary conditions. This allows the quantification of the gravitonic contribution to the Casimir effect from real bodies. I will show how to use this formula to calculate the meagre gravitonic Casimir effect in ordinary matter. I will also apply this formula to the speculated Heisenberg-Couloumb (HC) effect in superconductors, thereby providing a test for the validity of the HC theory, and, consequently, the existence of gravitons.
After a quick review of the Higgs and Coulomb branches of 3d N=4 theories, I'll introduce some simple classes of boundary conditions and explain how they lead to (pairs of) modules for certain (pairs of) quantum algebras. I will focus on abelian theories, for which the relevant boundary conditions/modules can be described using the geometry of (pairs of) hyperplane arrangements. From this, the simplest examples of symplectic-dual modules will arise.
I will introduce the unitarity, a parameter quantifying the coherence of a channel and show that it is useful for two reasons. First, it can be efficiently estimated via a variant of randomized benchmarking. Second, it captures useful information about the channel, such as the optimal fidelity achievable with unitary corrections and an improved bound on the diamond distance.