Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit.
Inelastic collisions occur in Bose-Einstein condensates, in some cases, producing particle loss in the system. Nevertheless, these processes have not been studied in the case when particles do not escape the trap. We show that such inelastic processes are relevant in quantum properties of the system such as the evolution of the relative population and entanglement. Moreover, including inelastic terms in the models of multimode condensates allows for an exact analytical solution.
The theory of strong interactions is an elegant quantum field theory known as Quantum Chromodynamics (QCD). QCD is deceptively simple to formulate, but notoriously difficult to solve. This simplicity belies the diverse set of physical phenomena that fall under its domain, from nuclear forces and bound hadrons, to high energy jets and gluon radiation.
TBA
In the future it may be possible to observe the CMB radiation at very low frequencies. I review the origin of the signal from 21cm absorption by dark-age gas and explain the huge potential for observational cosmology. I summarise recent work on theoretical expectations for the observable power spectrum, including discussion of Hubble-scale perturbations, the effects of perturbed recombination and non-linear evolution.
Sensitive information can be valuable to others - from your personal credit card numbers to state and military secrets. Throughout history, sophisticated codes have been developed in an attempt to keep important data from prying eyes. But now, new technologies are emerging based on the surprising laws of quantum physics that govern the atomic scale. These powerful techniques threaten to crack some secret codes in widespread use today and, at the same time, offer new quantum cryptographic protocols which could one day profoundly alter the way we safeguard critical information.
After a brief overview of the three broad classes of superconducting quantum bits (qubits)--flux, charge and phase--I describe experiments on single and coupled flux qubits. The quantum state of a flux qubit is measured with a Superconducting QUantum Interference Device (SQUID). Single flux qubits exhibit the properties of a spin-1/2 system, including superposition of quantum states, Rabi oscillations and spin echoes.
Graduate Course on Standard Model & Quantum Field Theory
Graduate Course on Standard Model & Quantum Field Theory
tba
Check back for details on the next lecture in Perimeter's Public Lectures Series