Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced by a classical process involving non-communicating parties. But can they be simulated with the help of bounded communication? This problem has been studied for more than twenty years and it is now well understood in the case of bipartite entanglement. However, the issue was still widely open for multipartite entanglement, even for the simplest case, which is the tripartite Greenberger-Horne-Zeilinger (GHZ) state.
The start of the talk will be an outline how the ordinary notions of quantum theory translate into the category of C*-algebras, where there are several possible choices of morphisms. The second half will relate this to a category of convex sets used as state spaces. Alfsen and Shultz have characterized the convex sets arising from state spaces C*-algebras and this result can be applied to get a categorical equivalence between C*-algebras and state spaces of C*-algebras which is a generalization of the equivalence between the Schroedinger and Heisenberg pictures.
I'll present a proof-of-concept new technique for tagging boosted objects which decay into two colored particles based on the wavelet transform. It is able to moderately improve the sensitivity of searches for such particles by 6-7%. I will also discuss future directions of applicability.
Groups and clusters of galaxies are the most massive gravitationally bound objects in the Universe. They are also the most recent cosmic objects to form. In the currently accepted models of cosmic structure formation, the number density distribution of the most massive of these systems, and how this has been changing with time, depend sensitively to the parameters describing the large-scale geometry and the expansion history of the universe. However, to exploit galaxy clusters as cosmological probes, we must be able to relate their observable properties to their total mass.
We compute the exact two-sphere, disk and real projective plane partition functions of two-dimensional supersymmetric theories using the localization technique. From these new results, we will attack old and new important problems in the string theory on Calabi-Yau spaces, and D-branes and Orientifold planes therein.