A A   
Connect with us:      

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday Oct 17, 2017
Speaker(s): 

Direct detection experiments are rapidly improving their sensitivity to weak scale Dark Matter.  A particular interesting (and minimal) possibility is that the Dark matter interacts with ordinary matter via the exchange of weak bosons: the W, Z, and Higgs.  Dark matter with substantial coupling to the Higgs boson is already under significant tension from limits on spin-independent scattering.  We comment on the power of  spin-dependent scattering as a probe of Z-mediated dark matter, both in a simple effective theory, and in the so-called Singlet-Doublet Model, which w

Collection/Series: 
Scientific Areas: 

 

Tuesday Oct 17, 2017
Speaker(s): 

I will describe a tidal effect whereby the decay of primordial gravity waves leaves a permanent shear in the large-scale structure of the Universe. Future large-scale structure surveys - especially radio surveys of high-redshift hydrogen gas - could measure this shear and its spatial dependence to form a map of the initial gravity-wave field. The three dimensional nature of this probe makes it sensitive to the helicity of the gravity waves, allowing for searches for early-Universe gravitational parity violation.

Collection/Series: 
Scientific Areas: 

 

Monday Oct 16, 2017
Speaker(s): 

It is easy to prove that d-dimensional complex Hilbert space can contain at most d^2 equiangular lines.  But despite considerable evidence and effort, sets of this size have only been proved to exist for finitely many d.  Such sets are relevant in quantum information theory, where they define optimal quantum measurements known as SIC-POVMs (Symmetric Informationally Complete Positive Operator-Valued Measures).  They also correspond to complex projective 2-designs of the minimum possible cardinality.   Numerical evidence points to their existence for all d as orbits of

Collection/Series: 
Scientific Areas: 

Pages