Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
We present a paradigm for effective descriptions of quantum magnets. Typically, a magnet has many classical ground states — configurations of spins (as classical vectors) that have the least energy. The set of all such ground states forms an abstract space. Remarkably, the low energy physics of the quantum magnet maps to that of a single particle moving in this space.
Randomness is a valuable resource in both classical and quantum networks and we wish to generate desired probability distributions as cheaply as possible. If we are allowed to slightly change the distribution under some tolerance level, we can sometimes greatly reduce the cardinality of the randomness or the dimension of the entanglement. By studying statistical inequalities, we show how to upper bound of the amount of randomness required for any given classical network and tolerance level. We also present a problem we encounter when compressing the randomness in a quantum network.
We study remarkable RG flows in 4d QFT where supersymmetry enhances from N=1 to N=2 in the IR. This is triggered by the N=1 preserving deformation of 4d N=2 SCFTs with non-Abelian flavor symmetry by adding a chiral multiplet in the adjoint representation of the flavor symmetry and giving a nilpotent vev to the chiral multiplet. When the original N=2 SCFT and choice of the vev satisfy certain conditions, the resulting RG flows give N=2 Argyres-Douglas theories in the IR. These flows thus enable us to compute partition functions of Argyres-Douglas theories via localization.
Check back for details on the next lecture in Perimeter's Public Lectures Series