Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
The idea that structure in the Universe was created from quantum mechanical vacuum fluctuations during inflation is very compelling, but unproven. Finding a test of this proposal has been challenging because the universe we observe is effectively classical. I will explain how quantum fluctuations can give rise to the density fluctuations we observe and will show that we can test this hypothesis using the statistical properties of maps of the universe.
Twisted bilayer graphene (tBLG) is a host to a variety of electronic phases, most notably superconductivity when doped away from putative correlated insulator phases. In order to understand the nature of those phases, numerical simulations such as Hartree-Fock calculation and density matrix renormalization group (DMRG) techniques are essential.
Due to the long-range Coulomb interaction and its fragile topology, however, tBLG is difficult to study with standard DMRG techniques.
I will discuss how central extensions of charge algebras in gravitational theories with null boundaries arise from an anomalous transformation of the boundary term in the gravitational action. This parallels the way in which the holographic Weyl anomaly appears in AdS/CFT, with the ambiguity in the normalization of the null generator being the analogue of the choice of Weyl frame.
The potential for discovering new gauge fields of nature relies upon extending the collision energy of hadron colliding beams as far as possible beyond the present 14 TeV capability of LHC. We must seek a balance of minimum cost/TeV for the ring of superconducting magnets, feasibility and cost of a tunnel to contain the ring, and balancing the luminosity against synchrotron radiation. Balancing feasibility, technology, and cost is crucial if there is to be a high-energy frontier for discovery of new gauge fields. Three design cases exhibit the tricky balance among these parameters:
Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter, and galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter on small scales at cosmological distances from the Milky Way. Research in this field can be broadly separated into works that aim to directly detect individual perturbers and works that aim to statistically constrain the matter distribution by looking at collective perturbations caused by an unresolved population of perturbers.
To analyze the performance of adaptive measurement protocols for the detection and quanti cation of state resources, we introduce the framework of quantum preparation games. A preparation game is a task whereby a player sequentially sends a number of quantum states to a referee, who probes each of them and announces the measurement result. The measurement setting at each round, as well as the final score of the game, are decided by the referee based on the past history of settings and measurement outcomes.
I discuss general argument to show that if a physical system can mediate locally the generation of entanglement between two quantum systems, then it itself must be non-classical. Remarkably, the argument does not assume any classical or quantum formalism to describe the mediating physical system: the result follows from general information-theoretic principles. This argument provides a robust and general theoretical basis for recently proposed tests of non-classicality in gravity, based on witnessing gravitationally-induced entanglement in quantum probes.
The theory of quasimaps to Nakajima quiver varieties X has recently been used very effectively by Aganagic, Okounkov and others to study symplectic duality. For certain X, namely Hilbert schemes of ADE surfaces, it turns out quasimap theory is equivalent to a particular flavor of Donaldson-Thomas theory on a related threefold Y. I will explain this equivalence and how it intertwines concepts and tools from the two sides. For example, symplectic duality has something to say about the crepant resolution conjecture for Y.
The astrophysical background of gravitational waves (AGWB) is composed by the incoherent superposition of gravitational wave signals emitted by resolved and unresolved astrophysical sources from the onset of stellar activity until today. In this talk, I will present a theoretical framework to characterize the AGWB in terms of energy density and polarization and I will show predictions for the angular power spectra of the background anisotropy and for its cross-correlations with electromagnetic observables, in the frequency bands accessible by LIGO/Virgo and LISA. I will then discuss t