Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In this talk I will discuss effective field theories for two classes of non-equilibrium systems, one far and one near equilibrium. The backbone of the approach is the Schwinger-Keldysh formalism, which is the natural starting point for doing field theory in non-equilibrium situations. In the first part of the talk I will present an effective response for topological driven (Floquet) systems, which are inherently far from equilibrium.
Many well-known correlations between dark matter and baryons exist on galactic scales. These can essentially be encompassed by a simple scaling relation between observed and baryonic accelerations, historically known as the Mass Discrepancy Acceleration Relation (MDAR). This relation has prompted many theories that attempt to explain the correlations by invoking additional fundamental forces on baryons.
In this talk, I will describe the framework of large D matrix models, which provides new limits for matrix models where the sum over planar graphs simplifies when D is large. The basic degrees of freedom are a set of D real matrices of size NxN which is invariant under O(D). These matrices can be naturally interpreted as a real tensor of rank three, making a compelling connection with tensor models. Furthermore, they have a natural interpretation in terms of D-brane constructions in string theory.
Absolute Gromov-Witten theory is known to have many nice structural properties, such as quantum cohomology, WDVV equation, Givental's formalism, mirror theorem, CohFT etc.. In this talk, I will explain how to obtain parallel structures for relative Gromov-Witten theory via the relation between relative and orbifold Gromov-Witten invariants. This is based on joint works with Honglu Fan, Hsian-Hua Tseng and Longting Wu.
This talk is a progress report on ongoing research. I will explain what resource theories have to do with real algebraic geometry, and then present a preliminary result in real algebraic geometry which can be interpreted as a theorem on asymptotic and catalytic resource orderings.
It reproves the known criterion for asymptotic and catalytic majorization in terms of Rényi entropies, and generalizes it to any resource theory which satisfies a mild boundedness hypothesis. I will sketch the case of matrix majorization as an example.
According to the Asymptotic Safety conjecture, a (non-perturbatively)
renormalizable quantum field theory of gravity could be constructed
based on the existence of a non-trivial fixed point of the
renormalization group flow.
The existence of this fixed point can be established, e.g., via the
non-perturbative methods of the functional renormalization group (FRG).
In practice, the use of the FRG methods requires to work within
truncations of the gravitational action, and higher-derivative operators