Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The Feynman diagram expansion for a Wilson loop observable in Chern-Simons gauge theory generates an infinite series of topological invariants for framed knots. In this talk, I will describe a new perturbative formalism which conjecturally generates the same invariants for Legendrian knots in the standard contact R^3. The formalism includes a `perturbative' localization principle which drastically simplifies the structure of calculations. As time permits, I will provide some examples and applications. This talk is based upon joint work with Brendan McLellan and Ruo
Quantum Field Theories are interacting quantum systems described by an infinite number of degrees of freedom, necessarily living on an infinite-dimensional Hilbert space. Hence, many concepts from Quantum Information Theory have to be adapted before they can be applied to this setting. However, the task is worthwhile as we obtain new tools to understand the entanglement structure of theories describing the fundamental forces of nature. I will outline two approaches along this route, one bottom-down and one bottom-up strategy.
Despite varying speed of light theories (VSL) should be considered as another type of alternative gravity theories with an extra scalar degree of freedom, their formulation causes the problems in view of breaking the light principle and relativity principle. Besides, there are a couple of physical contexts in which c plays the crucial role and it is uncertain that it has the same meaning everywhere. During my talk I will discuss some basic theoretical formulations of varying c theories and discuss their benefits as well as problems.
It is commonly believed that quantum information is not lost in a black hole. Instead, it is encoded into non-local degrees of freedom in some clever way; like a quantum error-correcting code. In this talk, I will discuss recent attempts to resolve some paradoxes in quantum gravity by using the theory of quantum error-correction. First, I will introduce a simple toy model of the AdS/CFT correspondence based on tensor networks and demonstrate that the correspondence between the AdS gravity and CFT is indeed a realization of quantum codes.