Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

 

Wednesday Jan 06, 2021
Speaker(s): 

In this talk, I argue that the question of whether a physical system can be simulated on a computer is important not just from a practical perspective but also a fundamental one. We consider the complexity of simulating Hamiltonians with respect to both dynamics and equilibrium properties. This gives us a classification and a phase diagram of the complexity.  I will cover recent results in this topic, such as a dynamical complexity phase diagram for a long-range bosonic Hamiltonian and a complexity classification of the local Hamiltonian problem in the presence of a spectral gap.

Scientific Areas: 
 

 

Friday Dec 18, 2020
Speaker(s): 

While spacetime and quantum theory are crucial parts of modern theoretical physics, the problem of quantum gravity demonstrates that their full relationship is not yet completely understood. In my talk, I report on two recent results that aim to shed light on this relationship via ideas and tools from quantum foundations.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Dec 17, 2020
Speaker(s): 

We consider monochromatic and isotropic photon emission from circular equatorial Kerr orbiters. We calculate the critical curve delineating the region of photon escape from that of photon capture in each emitter’s sky, allowing us to derive analytic expressions for the photon escape probability and the redshift-dependent total flux collected on the celestial sphere as a function of emission radius and black hole parameters. This critical curve generalizes to finite orbital radius the usual Kerr critical curve and displays interesting features in the limit of high spin.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Dec 16, 2020
Speaker(s): 

Relativistic quantum tasks are quantum computations which have inputs and outputs that occur at designated spacetime locations.

Understanding which tasks are possible to complete, and what resources are required to complete them, captures spacetime-specific aspects of quantum information. In this talk we explore the connections between such tasks and quantum gravity, specifically in the context of the AdS/CFT correspondence. We find that tasks reveal a novel connection between causal features of bulk geometry and boundary entanglement.

Scientific Areas: 
 

 

Wednesday Dec 16, 2020
Speaker(s): 

In this seminar, I will consider a deformed kinematics that goes beyond special relativity as a way to account for possible low-energy effects of a quantum gravity theory that could lead to some experimental evidences. This can be done while keeping a relativity principle, an approach which is usually known as doubly (or deformed) special relativity. In this context, I will give a simple geometric interpretation of the deformed kinematics and explain how it can be related to a metric in maximally symmetric curved momentum space.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Dec 16, 2020

In this talk I will introduce the Fully Constrained Formulation (FCF) of General Relativity. In this formulation one has a hyperbolic sector and an elliptic one. The constraint equations are solved in each time step and are encoded in the elliptic sector; this set of equations have to be solved to compute initial data even if a free evolution scheme is used for a posterior dynamical evolution. Other formulations (like the XCTS formulation) share a similar elliptic sector. I will comment about the local uniqueness issue of the elliptic sector in the FCF.

Collection/Series: 
 

 

Tuesday Dec 15, 2020
Speaker(s): 

This talk will be split into two distinct halves: The first half will be based on the paper arxiv:2007.03662 and suggest that an interplay between microscopic and macroscopic physics can lead to an undulation on time scales not related to celestial dynamics. By searching for such undulations, the discovery potential of light DM search experiments can be enhanced.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Dec 15, 2020
Speaker(s): 

Tensions between measurements in the early and the late universe could be the first hint of new physics beyond the cosmological standard model. In particular, the clustering of large scale structure and the current value of the Hubble parameter show intriguing discrepancies between measurements in the early and late universe. In this talk, I review the most common ways of easing these two tensions and focus specifically on parameter extensions and various models of dark matter, such as warm dark matter, cannibalistic dark matter, dark matter interactions, and dark radiation.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Dec 15, 2020
Speaker(s): 

The Ryu Takayanagi formula identifies the area of  extremal surfaces in AdS with the entanglement entropy of the boundary CFT. However the bulk microstate interpretation of the extremal area remains mysterious. Progress along this direction requires understanding how to define entanglement entropy in the bulk closed string theory. As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A model in the context of Gopakumar Vafa duality.

Collection/Series: 
Scientific Areas: 
 

 

Monday Dec 14, 2020

Consistent dynamics which couples classical and quantum systems exists, provided it is stochastic. This provides a way to
study the back-reaction of quantum systems on classical ones and has recently been explored in the context of quantum fields back-reacting

Collection/Series: 
Scientific Areas: 

Pages