Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Recent observations of gravitational waves represent a remarkable success of our theoretical models of relativistic binaries. However, accurate models are largely restricted to binaries in which the two members have roughly equal masses; for binaries with more disparate masses, modelling is less mature. This is especially relevant for extreme-mass-ratio inspirals (EMRIs), in which a stellar-mass object orbits a supermassive black hole in a galactic core. EMRIs are uniquely precise probes of black hole spacetimes, and they will be key targets for the space-based detector LISA.
Our ability to model cosmological observations has reached an awesome level, a tour de force of observational innovation, sophisticated statistical inference, and delicate numerical computation. There’s little doubt that the Standard Cosmological Model will stand the test of time. But what has it told us and what is still missing? What are the prospects for learning particle physics and condensed matter from cosmology? And what can the path we’ve taken to reach this point tell us about where it might lead?