Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Absolute Gromov-Witten theory is known to have many nice structural properties, such as quantum cohomology, WDVV equation, Givental's formalism, mirror theorem, CohFT etc.. In this talk, I will explain how to obtain parallel structures for relative Gromov-Witten theory via the relation between relative and orbifold Gromov-Witten invariants. This is based on joint works with Honglu Fan, Hsian-Hua Tseng and Longting Wu.
This talk is a progress report on ongoing research. I will explain what resource theories have to do with real algebraic geometry, and then present a preliminary result in real algebraic geometry which can be interpreted as a theorem on asymptotic and catalytic resource orderings.
It reproves the known criterion for asymptotic and catalytic majorization in terms of Rényi entropies, and generalizes it to any resource theory which satisfies a mild boundedness hypothesis. I will sketch the case of matrix majorization as an example.
According to the Asymptotic Safety conjecture, a (non-perturbatively)
renormalizable quantum field theory of gravity could be constructed
based on the existence of a non-trivial fixed point of the
renormalization group flow.
The existence of this fixed point can be established, e.g., via the
non-perturbative methods of the functional renormalization group (FRG).
In practice, the use of the FRG methods requires to work within
truncations of the gravitational action, and higher-derivative operators
Cosmological simulations of galaxy formation have evolved significantly over the last years.
In my talk I will describe recent efforts to model the large-scale distribution
of galaxies with cosmological hydrodynamics simulations. I will focus on the
Illustris simulation, and our new simulation campaign, the IllustrisTNG
project. After demonstrating the success of these simulations in terms of
reproducing an enormous amount of observational data, I will also talk about
their limitations and directions for further improvements over the next couple
The first part of this talk will introduce generalized Jordan–Wigner
transformation on arbitrary triangulation of any simply connected
manifold in 2d, 3d and general dimensions. This gives a duality
between all fermionic systems and a new class of Z2 lattice gauge
theories. This map preserves the locality and has an explicit
dependence on the second Stiefel–Whitney class and a choice of spin
structure on the manifold. In the Euclidean picture, this mapping is
exactly equivalent to introducing topological terms (Chern-Simon term
A superoscillatory function is a bandlimited function that, on some interval, oscillates faster than the highest frequency component shown in the function's Fourier transform. Superoscillations can be arbitrarily fast and of arbitrarily long duration but come at the expense of requiring a correspondingly large dynamic range. I will review how superoscillatory wave forms can be constructed and I will discuss the unusual behavior of wave functions that superoscillate. For example, they can describe particles that automatically strongly accelerate when passing through a slit.