Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In this talk, I will discuss some interesting connections between Hamiltonian complexity, error correction, and quantum circuits. First, motivated by the Quantum PCP Conjecture, I will describe a construction of a family of local Hamiltonians where the complexity of ground states — even when subject to large amounts of noise — is superpolynomial (under plausible complexity assumptions). The construction is simple, making use of the well-known Feynman-Kitaev circuit Hamiltonian construction.
Gravity theories naturally allow for edge states generated by non-trivial boundary-condition preserving diffeomorphisms. I present a specific set of boundary conditions inspired by near horizon physics, show that it leads to soft hair excitations of black hole solutions and discuss implications for black hole entropy.
So far artificial neural networks have been applied to discover phase diagrams in many different physical models. However, none of these studies have revealed any fundamentally new physics. A major problem is that these neural networks are mainly considered as black box algorithms. On the journey to detect new physics it is important to interpret what artificial neural networks learn. On the one hand this allows us to judge whether to trust the results, and on the other hand this can give us insight to possible new physics. In this talk I will
In the usual paradigm of quantum error correction, the information to be protected can be encoded in a system of abstract qubits or modes. But how does this work for physical information, which cannot be described in this way? Just as direction information cannot be conveyed using a sequence of words if the parties involved do not share a reference frame, physical quantum information cannot be conveyed using a sequence of qubits or modes without a shared reference frame. Covariant quantum error correction is a procedure for protecting such physical information against noise in such a way