Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In this talk we assume that Quantum Einstein Gravity (QEG) is the correct theory of gravity on all length scales. We use both analytical results from nonperturbative renormalization group (RG) equations and experimental input in order to describe the special RG trajectory of QEG which is realized in Nature. We identify a regime of scales where gravitational physics is well described by classical General Relativity. Strong renormalization effects occur at both larger and smaller momentum scales. The former are related to the (conjectured) nonperturbative renormalizability of QEG.
Chameleon scalar fields are candidates for the dark energy, the mysterious component causing the observed acceleration of the universe. Their defining property is a mass which depends on the local matter density: they are massive on Earth, where the density is high, but essentially massless in the cosmos, where the density is much lower. All current constraints from tests of general relativity are satisfied. Nevertheless, chameleons lead to striking predictions for tests of gravity in the laboratory and in space.