Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
In order to solve the problem of time in quantum gravity, various approaches to a relational quantum dynamics have been proposed. In this talk, I will exploit quantum reduction maps to illustrate a previously unknown equivalence between three of the well-known ones: (1) relational observables in the clock-neutral picture of Dirac quantization, (2) Page and Wootters’ (PW) Schrödinger picture formalism, and (3) the relational Heisenberg picture obtained via symmetry reduction. Constituting three faces of the same dynamics, we call this equivalence the trinity.
It is expected that the Betti version of the geometric Langlands program should ultimately be about the equivalence of two 4-dimensional topological field theories. In this talk I will give an overview of ongoing work in categorified sheaf theory and explain how one can use it to describe the categories of boundary conditions arising on the spectral side.
I'll explain the TFT perspective on holomorphic-topological twists of 3d N=4 and 4d N=2 theories, and outline some connections between the topics discussed in Justin and Davide's previous lectures, and various ongoing work of Justin, Philsang, Kevin, Davide, Tudor, myself, etc.
The area law for entanglement provides one of the most important connections between information theory and quantum many-body physics. It is not only related to the universality of quantum phases, but also to efficient numerical simulations in the ground state (i.e., the lowest energy state). Various numerical observations have led to a strong belief that the area law is true for every non-critical phase in short-range interacting systems [1].