Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
We study the possibility of a deconfined quantum phase transition in a realistic model of a two dimensional Shastry-Sutherland quantum magnet, using both numerical and field theoretic techniques. We argue that the quantum phase transition between a two fold degenerate plaquette valence bond solid (pVBS) order and N\'eel ordered phase may be described by a deconfined quantum critical point (DQCP) with emergent O(4) symmetry.
Defects and their RG flows play an important role in many systems, with perhaps the most famous example being the Kondo effect. We study Kondo-like interface flows in D1/D5 holography from the point of view of both probe branes and of the corresponding backreacted supergravity solutions.
In the context of geometric quantisation, one starts with the data of a symplectic manifold together with a pre-quantum line bundle, and obtains a quantum Hilbert space by means of the auxiliary structure of a polarisation, i.e. typically a Lagrangian foliation or a Kähler structure. One common and widely studied problem is that of quantising Hamiltonian flows which do not preserve it.
I will discuss the computation of second-order terms in the entanglement entropy and subregion complexity for a spherical entangling region in the AdS black hole background relative to pure AdS. I will suggest an extension of the conjectured relationship between subregion complexity and Fisher information into a relation that is reminiscent of the first law of thermodynamics. By analogy, entanglement and complexity play the roles of heat and work, respectively. Time permitting, I will also discuss the computation of third- and fourth-order terms in the relative entropy.
This is practice for a talk at Berkeley, so it will involve explaining stuff many people here probably already know. I'll try to summarize what I've learned about 3 dimensional N=4 supersymmetric quantum field theories, their twists and how these manifest in terms of interesting objects in mathematics. If nothing else, hopefully there will be some comedy value in my attempt.