This series consists of talks in the area of Quantum Gravity.
TBA
The speculation that Dark Energy can be explained by the backreaction of present inhomogeneities on the evolution of the background cosmology has been increasingly debated in the recent literature. We demonstrate quantitively that the backreaction of linear perturbations on the Friedmann equations is small but is nevertheless non-vanishing. This indicates the need for an improved averaging procedure capable of averaging tensor quantities in a generally covariant way.
Graphity models are characterized by configuration spaces in which states correspond to graphs and Hamiltonians that depend on local properties of graphs such as degrees of vertices and numbers of shortcycles. It has been argued that such models can be useful in studying how an extended geometry might emerge from a background independent dynamical system. As statistical systems, graphity models can be studied analytically by estimating their partition functions or numerically by Monte Carlo simulations. In this talk I will present recent results obtained using both of these approaches.
This talk is concerned with the existence of spectral triples in quantum gravity. I will review the construction of a spectral triple over a functional space of connections. Here, the *-algebra is generated by holonomy loops and the Dirac type operator has the form of a global functional derivation operator. The spectral triple encodes the Poisson structure of General Relativity when formulated in terms of Ashtekars variables.
For quantum gravity, the requirement of metric positivity suggests the use of noncanonical, affine kinematical field operators. In view of gravity\'s set of open classical first class constraints, quantization before reduction is appropriate, leading to affine commutation relations and affine coherent states. The anomaly in the quantized constraints may be accommodated within the projection operator approach, which treats first and second class quantum constraints in an equal fashion.
TBA
This talk presents some recent results in renormalizable noncommutative quantum field theory. After introducing the renormalization group approach in the commutative setting I will procede to its generalization to the simplest noncommutative model, $phi_4^{star 4}$ on the Moyal space. The well known phenomenon of ultraviolet/infrared mixing is cured by adding a harmonic potential term to the free action. Under the new renormalization group, adapted to the noncommutative geometry, this model turns out to be renormalizable to all orders in perturbation theory.
We analyze the trans-Planckian problem and its formulation in the context of cosmology, black-hole physics, and analogue models of gravity. In particular, we discuss the phenomenological approach to the trans-Planckian problem based on modified, locally Lorentz-breaking, dispersion relations (MDR). The main question is whether MDR leave an detectable imprint on macroscopic physics. In the framework of the semi-classical theory of gravity, this question can be unambiguously answered only through a rigorous formulation of quantum field theory on curved space with MDR.
The problem of time is studied in a toy model for quantum gravity: Barbour and Bertotti\'s timeless formulation of non-relativistic mechanics. We quantize this timeless theory using path integrals and compare it to the path integral quantization of parameterized Newtonian mechanics, which contains absolute time. In general, we find that the solutions to the timeless theory are energy eigenstates, as predicted by the usual canonical quantization.
The principles of Quantum Mechanics and of Classical General Relativity imply Uncertainty Relations between the different spacetime coordinates of the events, which yield to a basic model of Quantum Minkowski Space, having the full (classical) Poincare\' group as group of symmetries.