Quantum Gravity

This series consists of talks in the area of Quantum Gravity.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Thursday Sep 18, 2008
Speaker(s): 

During the last two decades Alain Connes developed Noncommutative Geometry, which allows to unify two of the basic theories of modern physics: General Relativity and the Standard Model of Particle Physics. In the noncommutative framework the Higgs boson, which had previously to be put in by hand, and many of the ad hoc features of the standard model, appear in a natural way. The aim of my talk is to motivate this unification from basic physical principles and to give a flavour of its derivation.

Collection/Series: 
Scientific Areas: 

 

Thursday Aug 14, 2008
Speaker(s): 

The speculation that Dark Energy can be explained by the backreaction of present inhomogeneities on the evolution of the background cosmology has been increasingly debated in the recent literature. We demonstrate quantitively that the backreaction of linear perturbations on the Friedmann equations is small but is nevertheless non-vanishing. This indicates the need for an improved averaging procedure capable of averaging tensor quantities in a generally covariant way.

Collection/Series: 
Scientific Areas: 

 

Thursday Jun 12, 2008
Speaker(s): 

Graphity models are characterized by configuration spaces in which states correspond to graphs and Hamiltonians that depend on local properties of graphs such as degrees of vertices and numbers of shortcycles. It has been argued that such models can be useful in studying how an extended geometry might emerge from a background independent dynamical system. As statistical systems, graphity models can be studied analytically by estimating their partition functions or numerically by Monte Carlo simulations. In this talk I will present recent results obtained using both of these approaches.

Collection/Series: 
Scientific Areas: 

 

Thursday May 29, 2008
Speaker(s): 

This talk is concerned with the existence of spectral triples in quantum gravity. I will review the construction of a spectral triple over a functional space of connections. Here, the *-algebra is generated by holonomy loops and the Dirac type operator has the form of a global functional derivation operator. The spectral triple encodes the Poisson structure of General Relativity when formulated in terms of Ashtekars variables.

Collection/Series: 
Scientific Areas: 

 

Thursday May 15, 2008
Speaker(s): 

For quantum gravity, the requirement of metric positivity suggests the use of noncanonical, affine kinematical field operators. In view of gravity\'s set of open classical first class constraints, quantization before reduction is appropriate, leading to affine commutation relations and affine coherent states. The anomaly in the quantized constraints may be accommodated within the projection operator approach, which treats first and second class quantum constraints in an equal fashion.

Collection/Series: 
Scientific Areas: 

 

Thursday May 08, 2008
Speaker(s): 

This talk presents some recent results in renormalizable noncommutative quantum field theory. After introducing the renormalization group approach in the commutative setting I will procede to its generalization to the simplest noncommutative model, $phi_4^{star 4}$ on the Moyal space. The well known phenomenon of ultraviolet/infrared mixing is cured by adding a harmonic potential term to the free action. Under the new renormalization group, adapted to the noncommutative geometry, this model turns out to be renormalizable to all orders in perturbation theory.

Collection/Series: 
Scientific Areas: 

 

Thursday Apr 24, 2008

We analyze the trans-Planckian problem and its formulation in the context of cosmology, black-hole physics, and analogue models of gravity. In particular, we discuss the phenomenological approach to the trans-Planckian problem based on modified, locally Lorentz-breaking, dispersion relations (MDR). The main question is whether MDR leave an detectable imprint on macroscopic physics. In the framework of the semi-classical theory of gravity, this question can be unambiguously answered only through a rigorous formulation of quantum field theory on curved space with MDR.

Collection/Series: 
Scientific Areas: 

Pages