This series consists of talks in the area of Foundations of Quantum Theory. Seminar and group meetings will alternate.
What if the second law of thermodynamics, in the hierarchy of physical laws, were at the same level as the fundamental laws of mechanics, such as the great conservation principles? What if entropy were an intrinsic property of matter at the same level as energy is universally understood to be? What if irreversibility were an intrinsic feature of the microscopic dynamical law of all physical objects, including an individual qubit or qudit?
The simplest algebraic curves of genus one are the nonsingular cubics in two-dimensional complex projective space. Interpreting CP^2 as the space of pure quantum states associated with a Hilbert space of dimension three, I will show how various properties of d=3 symmetric informationally complete positive operator valued measures can be understood in terms of the geometry of such curves. The resulting structure, although of considerable complexity, is very beautiful from a mathematical perspective.
The solution of many problems in quantum information is critically dependent on the geometry of the space of density matrices. For a Hilbert space of dimension 2 this geometry is very simple: it is simply a sphere. However for Hilbert spaces of dimension greater than 2 the geometry is much more interesting as the bounding hypersurface is both highly symmetric (it has a d^2 real parameter symmetry group, where d is the dimension) and highly convoluted. The problem of getting a better understanding of this hypersurface is difficult (it is hard even in the case of a single qutrit).
Results in decoherence theory and entanglement theory will be considered as tools illuminating the foundation of quantum mechanics and the possible relationship of quantum information to it.
The mathematical formalism of quantum theory has many features whose physical origin remains obscure. In this paper, we attempt to systematically investigate the possibility that the concept of information may play a key role in understanding some of these features. We formulate a set of assumptions, based on generalizations of experimental facts that are representative of quantum phenomena and physically comprehensible theoretical ideas and principles, and show that it is possible to deduce the finite-dimensional quantum formalism from these assumptions.
Collapse models are one of the most promising attempts to overcome the measurement problem of quanum mechanics: they descibe, within one single framework, both the quantum properties of microscopic systems and the classical properties of macroscopic objects, and in particular they explain why measurements always have definite outcomes, distributed according to the Born probability rule.
We will postulate a novel notion of probability; this will involve introducing an extra axiom of probability that seems natural from a Bayesian perspective. We will then provide an analogue of Gleason's theorem for these probabilities. We will also discuss why this approach may be useful for generalizations of quantum theory such as quantum gravity theories; this will involve discussing an analogy between Bayesian approaches and relational approaches.
The problem of associating beables (hidden variables) to QFT, in the spirit of what Bohm did for nonrelativistic QM, is not trivial. In 1984, John Bell suggested a way of solving the problem, according to which the beables are the positions of fermions, in a discretized version of QFT, and obey a stochastic evolution that simulates all predictions of QFT. In the continuum limit, it will be shown that the Bell model becomes deterministic and that it is related to the choice of the charge density as a beable. Moreover, the charge superselection rule is a consequence of the Bell model.